Commenting on Software Technology Trends & Market Dynamics

Jnan Dash

Subscribe to Jnan Dash: eMailAlertsEmail Alerts
Get Jnan Dash: homepageHomepage mobileMobile rssRSS facebookFacebook twitterTwitter linkedinLinkedIn


Related Topics: Chip Design

Blog Feed Post

IBM’s Neuromorphic Computing Project

The Neuromorphic Computing Project at IBM is a pioneer in next-generation chip technology. The project has received ~$70 million in research funding from DARPA (under SyNAPSE Program), US Department of Defense, US Department of Energy, and Commercial Customers. The ground-breaking project is multi-disciplinary, multi-institutional, and multi-national and has a world-wide scientific impact. The resulting architecture, technology, and ecosystem breaks path with the prevailing von Neumann architecture and constitutes a foundation for energy-efficient, scalable neuromorphic systems. The head of this project is Dr. Dharmendra Modha, IBM Fellow and chief scientist for IBM’s brain-inspired computing project.

So why is the Von Neumann architecture inadequate for brain-inspired computing? The Von Neumann model goes back to 1946 where it dealt with 3 things – the CPU, memory and a bus. You move data to and from memory. The bus connects the memory & CPU via computation. It becomes the bottleneck, and also sequentializes computation. So if you have to flip a single bit, you have to read that bit from memory and write it back.

The new architecture is radically different. The IBM project takes inspiration from the structure, dynamics, and behavior of the brain to see if they can optimize time, speed, and energy of computation. Co-locate memory and computation and slowly intertwine communication, just like how the brain does, then you can minimize the energy of moving bits from memory to computation. You can get event-driven computation rather than clock-driven computation, and you can compute only when information changes.

The Von Neumann paradigm is, by definition, a sequence of instructions interspersed with occasional if-then-else statements. Compare that to a neural network, where a neuron can reach out to up to 10,000 neighbors. The TrueNorth (IBM’s new chip) can reach out to up to 256, and the reason for that disparity is because it is silicon and not organic technology. But there’s a very high fan-out, and high fan-out is difficult to implement in a sequential architecture. An AI system IBM developed last year for Lawrence Livermore National Lab had 16 TrueNorth chips tiled in a 4-by-4 array. The chips are designed to be tiled, so scalability is built in as a design principle rather than as an afterthought.

In summary, the design points of the IBM project are as follows:

  • The Von Neumann architecture won’t be able to provide the massively parallel, fault-tolerant, power-efficient systems that will be needed to create to embed intelligence into silicon. Instead, IBM had to rethink processor design.
  • You can’t throw out the baby with the bathwater: even if you rethink underlying hardware design, you need to implement sufficiently abstracted software libraries to reduce the pain of the software developer so that he can program your chip.
  • You can achieve power efficiency by changing the way you build software and hardware to become active only when an event occurs; rather than tying computation to a series of sequential operations, you make it into a massively parallel job that runs only when the underlying system changes.

AI is getting notable success in the area of perception such as speech and image recognition. In the field of reinforcement learning and deep learning, the human brain becomes the primary inspiration. Hence the IBM Neuromorphic chip design becomes a significant foundational technology.

Read the original blog entry...

More Stories By Jnan Dash

Jnan Dash is Senior Advisor at EZShield Inc., Advisor at ScaleDB and Board Member at Compassites Software Solutions. He has lived in Silicon Valley since 1979. Formerly he was the Chief Strategy Officer (Consulting) at Curl Inc., before which he spent ten years at Oracle Corporation and was the Group Vice President, Systems Architecture and Technology till 2002. He was responsible for setting Oracle's core database and application server product directions and interacted with customers worldwide in translating future needs to product plans. Before that he spent 16 years at IBM. He blogs at http://jnandash.ulitzer.com.